Interfacial dynamics of simple fluids at the nanoscale: a molecular simulation perspective.

Guillaume GALLIERO

Laboratoire des Fluides Complexes et leurs Réservoirs, IPRA, UMR5150, e2s UPPA

Despite its wide interest in many applications, modeling accurately the dynamics of two phases (fluid-fluid and fluid-solid) interface still remains quite challenging, even when dealing with simple fluids. This is even more complex when three-phase (fluid-fluid-solid) interface dynamics is dealt with, because of the multi-scale (in time and space) nature of such systems. A possible way to improve our understanding of such systems at the nano-scale is to use molecular dynamics simulations in which the interface dynamics behavior emerges without any a priori. Thus, during the presentation, we will illustrate how molecular dynamics simulations of a nanodroplet moving on a perfectly rigid solid can shed light on some small scales phenomena occurring at interfaces and how such information can be impleted in a macroscale simulator based on a Navier Stokes + Volume of fluid strategy.